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ABSTRACT

We study the global and local approaches to the problem of extension of

operators into Lindenstrauss spaces.

1. Introduction

Early in the 70’s Lindenstrauss and Pe lczyński proved in [20] that every C(K)-

valued operator from a subspace of c0 can be extended to the whole c0. In

that paper it is remarked that the same holds true replacing “C(K)-space” by

“isometric L1-predual”, later called Lindenstrauss spaces in the literature. The

result therefore should be:

Theorem 1.1: Let X be a closed subspace of c0. Let be Y a Banach space

such that Y ∗ = L1(µ) for some measure µ and let T : X → Y be an operator.

Then, for each ε > 0, T admits an extension to an operator T̃ : c0 → Y with

‖T̃‖ < (1 + ε)‖T ‖.
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A proof for this result, which to the best of our knowledge has never appeared

explicitly in the literature, is presented in the Appendix.

The paper thus focuses on the study of the extension of operators into Linden-

strauss spaces. Following Zippin’s language, in Section 2 we adopt a global ap-

proach to describe how the extension into different types of Lindenstrauss spaces

comes characterized by the existence of different types of weak*-continuous

selectors. Sections 3 and 4 adopt a local approach; with it, we prove the

Lindenstrauss–Pe lczyński result, extend it to the nonseparable case, provide

new constructions in which the extension of operators into Lindenstrauss spaces

exists and show that the Bourgain–Pisier construction [5] of exotic L∞-spaces

is one of those. Section 5 shows the difference between extending operators

into C(K)-spaces, into Lindenstrauss spaces, into L∞-spaces that already ad-

mit extension of operators from subspaces of c0 and into arbitrary L∞-spaces.

Section 6 is the Appendix with the proof of the Lindenstrauss–Pe lczyński result

following the indication of the authors of [20].

2. The global approach to the extension problem into Lindenstrauss

spaces

The following definition taken from [11] shall be useful:

Definition: Given a class A of Banach spaces and a positive scalar λ we will

say that an exact sequence 0 → Y → X → Z → 0 is (λ,A)-trivial or that

(λ,A)-splits if and only if for every A ∈ A every operator τ : Y → A can be

extended to an operator T : X → A verifying ‖T ‖ ≤ λ‖τ‖. When it is not

necessary to specify the λ we shall simply say that the sequence A-splits or

that it is A-trivial.

A Banach space is said to be a Lindenstrauss space if its dual is isometric to

some L1(µ)-space. In what follows we will denote by L the class of Lindenstrauss

spaces. The following subclasses of L were isolated in [22, 19]:

C(K): The spaces of continuous functions on compact Hausdorff spaces.

C(K)0: The spaces of continuous functions on compact Hausdorff spaces

K which vanish at a fixed point.

Cσ(K): The spaces of continuous functions on compact Hausdorff spaces

K which satisfy f(σk) = −f(k) for all k ∈ K, where σ : K → K is a

homeomorphism of period 2.
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C(K)Σ: Those Cσ(K) spaces for which σ has no fixed points.

M: Sublattices of C(K) spaces. What is the same, spaces X which can be

represented as follows: There exist a Hausdorff compact space K and a

set of triples {k1
α, k

2
α, λα}α∈A with k1

α, k
2
α ∈ K and λα ≥ 0 such that X

is the set of all f ∈ C(K) which satisfy f(k1
α) = λαf(k2

α) for all α ∈ A.

G: Spaces defined like the explicit definitions of M-spaces only that now

the λα are allowed to be arbitrary real numbers.

A(S): Spaces of affine functions on a simplex S.

The global approach to the extension problem was introduced by Zippin [29]

as follows:

Lemma 2.1: Given a subspace j : Y → X of a Banach space, every operator

T : Y → C(K) can be extended to an operator T̂ : X → C(K) with estimate

‖T̂‖ ≤ λ‖T ‖ if and only if there is a weak*-continuous map ω : BY ∗ → λBX∗

such that j∗ω = id.

The map ω shall be called a weak*-continuous selector or simply a w∗-selector

for j∗ (a λw∗-selector if the quantitative estimate is needed). Given a weak*-

continuous selector ω for an isometric embedding j : Y → X , every operator

τ : Y → C(K) can be extended through j by the formula

τω(x)(k) = 〈ωτ∗(k), x〉.

The operator τω defined in this way will be called the Zippin extension of τ

through j using ω. It is clear that

‖τω‖ ≤ ‖ω‖‖τ‖

where ‖ω‖ = sup{‖ω(y∗)‖ : ‖y∗‖ ≤ 1}. Conversely, if every operator

Y → C(K) can be extended to X through j then one just needs to extend

the canonical embedding δ : Y → C(BY ∗) to an operator ∆ : X → C(BY ∗), to

obtain a weak*-continuous selector ω for j∗:

〈ω(y∗), x〉 = ∆(x)(y∗)

that verifies ‖ω‖ ≤ ‖∆‖.

Zippin uses this criterion in [29, 30] to obtain different proofs of the Linden-

strauss–Pe lczyński theorem, and in [28] to embed every separable Banach space

X into some separable space ZX with FDD in such a way that ZX/X also has

FDD and moreover the sequence 0 → X → ZX → ZX/X → 0 is C(K)-trivial.
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There are simple correspondences between the type of Lindenstrauss space

that can be set as target space and the type of w*-selector that is possible to

obtain. We collect all the information in the following omnibus lemma.

Lemma 2.2: Let 0 → Y
j
→ X → Z → 0 be an exact sequence.

(1) It is (λ,C(K))-trivial if and only if there is a λw*-selector for j∗.

(2) It is (λ,C(K)0)-trivial if and only if there is a λw*-selector for j∗ such

that ω(0) = 0. In particular, it is (λ,C(K)0)-trivial if and only if it is

(λ,C(K))-trivial.

(3) It is (λ,Cσ(K))-trivial if and only if there is a symmetric λw*-selector

for j∗. In particular, it is (λ,Cσ(K))-trivial if and only if it is (λ,C(K))-

trivial.

(4) (λ,M)-trivial if and only if there is a positive homogeneous λw*-selector

for j∗.

(5) (λ,G)-trivial if and only if there is a homogeneous λw*-selector for j∗.

If Y is separable, G-splitting coincides with C(K)-splitting.

(6) (λ,A(S))-trivial for a fixed τ : Y → A(S) if and only if there exists a

weak* continuous map ω : S → λBX∗ , such that j∗ω = τ∗δ.

(7) Trivial if and only if there is a affine w∗-selector for j∗.

Proof. The proof of (2) and (3) is essentially the same. In both cases, the

first part is routine while for the second, given a selector ω, the symmetric

map ω̃(x) := ω(x)−ω(−x)
2 is also a selector. Moreover, the equivalence between

C(K)0-splitting and C(K)-splitting is clear since C(K)0-spaces are at worst

2-complemented subspaces of C(K)-spaces. It was proved by Samuel [25] that

separable Cσ(K))-spaces are isomorphic to C(K)-spaces, which yields the equiv-

alence between Cσ(K))-splitting and C(K)-splitting for separable Y .

We prove now the case of G-spaces which is by far the most interesting.

Observe first that the space G(BY ∗) = {f ∈ C(BY ∗) : f(λy∗) = λf(y∗)} of

homogeneous weak*-continuous functions on BY ∗ endowed with the supremum

norm is a G-space constructed over the set of triples

{{λy∗, y∗, λ}λ∈λ(y∗)}y∗∈BY ∗

where λ(y∗) is {λ ∈ R : λy∗ ∈ BY ∗} for every y∗ ∈ BY ∗ . Moreover, the

canonical embedding δ : Y → G(BY ∗) has the universal property that every

operator τ : Y → G into any G-space can be extended to G(BY ∗) through δ.

Indeed, assume that A = {aα, bα, λα}α is the set of triples for G with base
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compact space K, and let τ : Y → G be a norm-one operator. We define

T : G(BY ∗) → G as usual T (f)(k) = f(τ∗k). We only have to check that T

takes values in G. Since τ takes values in G, τ∗(aα) = λατ
∗(bα), and therefore

Tf(aα) = f(τ∗aα) = f(λατ
∗(bα)) = λαTf(bα).

It is clear that Tδ = τ

Therefore, given an embedding j : Y → X , every operator τ : Y → G into

a G-space extends through j if and only if δ extends through j. Now, assume

that δ admits an extension ∆ : X → G(BY ∗) through j. Then

ω(y∗)(x) = ∆(x)(y∗)

is an homogeneous ‖∆‖w∗-selector for j∗. It is homogeneous since

ω(λy∗)(x) = ∆(x)(λy∗) = λ∆(x)(y∗) = λω(y∗)(x).

Conversely, if there is an homogeneous λw∗-selector ω for j∗ then δ(x)(y∗) =

ω(y∗)(x) is an extension of δ with norm at most λ.

Now we present a result showing how often homogeneous selectors appear.

The interest in the existence of this particular class of selectors has been recently

renowned by works of Kalton, see [17] and [18]. It is also the key to prove the

nonseparable version of Lindenstrauss–Pe lczyński’s extension theorem as is done

by Johnson and Zippin [15].

Theorem 2.1: Let Y be a separable subspace of X . If there exists a weak*-

continuous selectorBY ∗ → λBX∗ then there is a homogeneous weak*-continuous

selector BY ∗ → 3λBX∗ .

Proof. The key is Benyamini’s proof [1] that every separable G-space is

isomorphic to a C(K)-space. Thus, let α : G(BY ∗) → C(K) be an iso-

morphism. If there is a λw∗-selector ω for j∗ then αδ can be extended to

an operator αδ : X → C(K). Therefore α−1αδ : X → G(BY ∗) is an ex-

tension of δ through j. The homogeneous weak*-continuous selector is then

ω′(y∗)(x) = α−1αδ(x)(y∗). The value of the new constant is, at first sight,

µ = λ inf d(C(K), G(BY ∗)) where d denotes the Banach–Mazur distance, and

the inf is taken over all C(K) spaces. To get the precise estimate of the con-

stant we need to go inside Benyamini’s proof. Benyamini proves there exists an

isomorphism S : G(BY ∗) → Z where Z is isometric to Cσ(S) for some compact
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metric S. This isomorphism is controlled by ‖S‖ ≤ 3/2 and ‖S−1‖ ≤ 2. To

conclude just apply (3) in the lemma above.

In the nonseparable case, Benyamini [2] constructed an M-space that is not

complemented in any C(K)-space. If we call M to such space the sequence

0 → M → C(BM∗) → Z → 0 is obviously C(K)-trivial but not M-trivial

and therefore not G-trivial. This means that in this case there exists a weak*-

continuous selector but not an homogeneous weak*-continuous selector. In other

words, C(K)-splitting does not imply in general M-splitting although in the

separable setting C(K)-splitting and G-splitting coincide. Zippin showed in [28,

Ex.3] that for 1 < p < +∞ every exact sequence 0 → W → lp → lp/W → 0 is

(1,C(K))-trivial. It has been proved now that they are G-trivial (actually (1,G)-

trivial if one observes that the weak*-continuous selector that Zippin provides

is itself homogeneous).

3. The local approach to the extension problem into Lindenstrauss

spaces

Let us briefly sketch the push-out construction in Banach spaces since it is

essential for our purposes; it can be seen described in full details, in the category

of Banach spaces, in [9, 6].

Given an operator S : Y →M and an embedding j : Y → X , their push-out is

the quotient space PO = M ⊕1X/∆ where ∆ = {(Sy,−jy) ∈M ⊕1X}. There

exist two operators: uS : X → PO and uj : M → PO such that uSj = ujS,

which are the restrictions to M and X of the quotient map M ⊕1 X → PO.

The push-out construction has the universal property that given two operators

α : M → E and β : X → E such that αS = βj there exists a unique operator γ :

PO → E such that γuj = α and γuS = β and moreover ‖γ‖ ≤ max{‖α‖, ‖β‖}.

Let us also recall that an exact sequence 0 → Y
j
→ X → Z → 0 of Banach

spaces is a diagram in which the kernel of each arrow coincides with the image

of the preceding. An exact sequence is said to split if there is a linear continuous

projection of X onto j(Y ); namely, the identity of Y can be extended through

j to a linear continuous operator X → Y . We shall use the notation 0 →

Y
j
→ X → Z → 0 ≡ F when a name for the sequence becomes necessary. If

0 → Y
j
→ X

q
→ Z → 0 is an exact sequence then with Q[(m,x) + ∆] = qx there
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exists a commutative diagram

0 // Y
j

//

S

��

X
q

//

uS

��

Z // 0

0 // M uj

// PO
Q

// Z // 0.

Theorem 3.1: Let H be a closed subspace of c0. Let be Y a Banach space in

which every separable subspace is contained in the inductive limit of a sequence

Y1
δ1

// Y2
δ2

// Y3
δ3

// · · ·

of subspaces of Y in which Yn is (1+2−n)-isomorphic to some finite-dimensional

l
k(n)
∞ -space, and the operators δn are into isometries. Then, for each ε > 0 every

operator T : X → Y admits an extension to an operator T̃ : c0 → Y .

Proof. There is no loss of generality assuming that Y is separable since the

range of T actually lies on a separable subspace of Y ; and, therefore, that Y

itself is an inductive limit as in the statement of the theorem. Our second set

of simplifications is:

• To assume that H = c0(An), where (An) is a sequence of finite-dimen-

sional Banach spaces.

• To assume that c0(An) is embedded into c0 in the following specific

form: let an : An → l
a(n)
∞ be an (1 + 2−n)-isometry and then consider

the embedding j0 : c0(An) → c0(l
a(n)
∞ ) given by j0((xn)) = (an(xn)).

It follows from Sobczyk’s theorem that if every operator T : c0(An) → Y

can be extended to c0 through j0 then every operator T : c0(An) → Y can be

extended to c0 through any embedding. That it is enough to work with sub-

spaces having the form c0(An) for a certain collection (An) of finite dimensional

Banach spaces follows from classical results of Johnson-Rosenthal and Zippin

(see [21]) asserting that each subspace H of c0 admits a subspace having the

form c0(An) such that the corresponding quotient space H/c0(An) has the form

c0(Bn). The rest is a 3-space-like argument:
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Lemma 3.1: Let A be a class of Banach spaces. Consider the completed push-

out diagram of Banach spaces

0

��

0

��

B

a

��

B

b

��

0 // Y
j

//

c

��

X //

d

��

Z // 0 ≡ F

0 // C
i

//

��

D //

��

Z // 0 ≡ G

0 0

H V

Then V and G are A-trivial if and only if F and H are A-trivial.

Proof. Assume that V and G are A-trivial. It is clear that if V is A-trivial then

so is H . Let us show that also F is A-trivial. Let A ∈ A and τ : Y → A an

operator. Since V is A-trivial, τa can be extended to an operator TX through

b. Since (τ − TXj)a = 0, there is TC : C → A such that TCc = τ − TXj. Since

G is A-trivial, TC can be extended to an operator TD through i. The operator

TX + TDd : X → A is the desired extension:

(TX + TDd)j = TXj + TDic = TXj + TCc = TXj + τ − TXj = τ.

Assume now that H and F are A-trivial. Then G is necessarily A-trivial

by the universal property of the push-out. It remains to show that V is A-

trivial. Let τ : B → A. Take TY an extension of τ through a and then TX an

extension of TY through j. This is the desired extension since TXb = TXja =

TY a = τ .

Returning to the main proof, let then φ : c0(An) → Y be a norm one operator.

The construction of the extension Φ : c0(l
a(n)
∞ ) → Y of φ shall be performed
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inductively. We actually will define Φ on the dense subspace of finitely sup-

ported elements. In this way, everything reduces to a question involving finite

dimensional Banach spaces. Let εn > 0 be such that
∏

(1 + εn) ≤ 1 + ε.

Let an : An → l
a(n)
∞ be a (1 + εn)-isometric embedding and let δn : l

k(n)
∞ →

l
k(n+1)
∞ be an isometric embedding. There is no loss of generality assuming

that the restriction φn of φ to A1 ⊕∞ · · · ⊕∞ An lies in Yn = l
k(n)
∞ . Let

ωn : BA∗
n
→ (1 + εn)B

l
a(n)
1

be a homogeneous weak*-continuous selector for

a∗n (it exists thanks to the Bartle-Graves continuous selection (see [3] or else

[9]). Let Φ1 be the operator (δ1φ1)ω1 : l
a(1)
∞ → l

k(2)
∞ , a Zippin extension of δ1φ1

through a1 using ω1. We set the operator

Φ2 = (δ1φ1)ω1 ⊕ φ2 : l
a(1)
∞ ⊕∞ A2 −−−−→ l

k(2)
∞

which is defined as

[(δ1φ1)ω1 ⊕ φ2] (x, y) = (δ1φ1)ω1(x) + φ2(y).

Observe that [(δ1φ1)ω1⊕φ2](a1, 1A2) = φ2 since (δ1φ1)ω1a1 = δ1φ1 = φ2(1A1 , 0).

Moreover,

(δ1φ1)ω1 ⊕ φ2 = φ
(ω1,1)
2 ,

where (ω1, 1) : BA∗
1⊕1A∗

2
→ (1 + ε1)B

l
a(n)
1 ⊕1A∗

2
is the homogeneous weak*-

continuous selector (ω1, 1)(a∗1, a
∗
2) = (ω1(a∗1), a∗2). It therefore follows

‖(δ1φ1)ω1 ⊕ φ2‖ ≤ (1 + ε1)‖φ2‖.

Assuming the operator Φn : l
a(1)
∞ ⊕∞ · · · ⊕∞ l

a(n−1)
∞ ⊕∞ An −→ l

k(n)
∞ has al-

ready been constructed verifying ‖Φn‖ ≤ (1 + ε1) · · · (1 + εn)‖φn‖ and

Φn(a1, . . . , an−1, 1An
) = φn then the operator

Φn+1 = (δnΦn)ωn ⊕ φn+1 : l
a(1)
∞ ⊕∞ · · · ⊕∞ l

a(n)
∞ ⊕∞ An+1 −−−−→ l

k(n+1)
∞

comes defined as

[(δnΦn)ωn ⊕ φn+1] (x, y) = (δnΦn)ωn(x) + φn+1(y).

Reasoning exactly as in step 1, one has

‖Φn+1‖ ≤ (1 + ε1) · · · (1 + εn)(1 + εn+1)‖φn+1‖

and

Φn+1(a1 ⊕ · · · ⊕ an ⊕ 1An+1) = φn+1.
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The process is illustrated by the following diagram.

A1
a1

//

φ1

��

(1A1 ,0)

  B
BB

BB
BB

BB
BB

BB
l
a(1)
∞

Φ1

		��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

!!C
CC

CC
CC

CC
CC

C

A1 ⊕∞ A2

φ2

��

(a1,1A2)

// l
a(1)
∞ ⊕∞ A2

Φ2=(δ1φ1)
ω1⊕φ2

}}||
||

||
||

||
||

||
||

||
||

||
||

||
||

|

l
k(1)
∞

δ1

  B
BB

BB
BB

BB
BB

B

l
k(2)
∞

To keep track of the norm of the extension is not easy: the inductive process

yields an estimate of
∏

(1 + εn) ≤ (1 + ε); which Sobczyk’s theorem doubles

when one considers an arbitrary embedding. It is the 3-space argument which

spoils the estimate.

After the work of Michael and Pe lczyński [23] and then Lazar and Linden-

strauss [19], separable isometric preduals of L1 are precisely inductive limits of

finite dimensional spaces Fn such that Fn can be chosen 1 + 2−n-isomorphic to

ldimFn
∞ .

The local approach allows us to obtain the nonseparable version for the ex-

tension into Lindenstrauss spaces.

Theorem 3.2: Every sequence 0 → H → c0(Γ) → c0(Γ)/H → 0 is L-trivial.

Proof. We first need a result of Moreno and Plichko [24] providing a decomposi-

tion of Γ as ∪α∈AΓα in countable sets Γα and three isometries u : H → c0(Hα),

v : c0(Γ) → c0(c0(Γα)) and w : c0(Γ)/H → c0(c0(Γα)/Hα) in such a way that

the diagram

0 // H //

u

��

c0(Γ) //

v

��

c0(Γ)/H //

w

��

0

0 // c0(Hα) // c0(c0(Γα)) // c0(c0(Γα)/Hα) // 0
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is commutative. Here the exact sequence below is the c0-amalgam of certain

exact sequences 0 → Hα → c0(Γα) → c0(Γα)/Hα → 0. It is therefore sufficient

to prove the result for the lower sequence.

Given thus an operator φ : c0(Hα) → Y , let us consider the restrictions

φα : Hα → Y and then extend each to Φα : c0(Γα) → Y with a uniform

bound on the norm of the extensions. It remains to show that the amalgam of

the extensions Φ(xα) =
∑

Φα(xα) defines an operator c0(c0(Γα)) → Y . This

happens, see [4], if and only if there is a norming subset N ⊂ BY ∗ such that

(1) sup
y∗∈N

∑
‖Φ∗

α(y∗)‖ < +∞.

In our case, since each Hα is separable, the inductive approach we have just

described applies to extend φα. We omit from now on the subindex α. To prove

that condition (1) holds, it is sufficient to show that sup
∑

‖Φ∗(y∗)‖ < +∞

when y∗ is any of the extreme points e∗
j,k(n) of (l

k(n)
∞ )∗ to which Φ∗ eventually

applies. What we actually show is that

(2) ‖Φ∗(e∗j,k(n))‖ ≤ C‖φ∗(e∗j,k(n))‖.

To prove this, let us observe that a Zippin extension of an operator τ : Y →

C(K) through an embedding j : Y → X using a homogeneous weak*-continuous

selector ω verifies:

‖(τω)∗(k)‖ ≤ ‖ω‖‖τ∗(k)‖.

Since (δnΦn)ωn ⊕φn+1 = φ
(ωn,1)
n+1 is a Zippin extension of φn+1 using the homo-

geneous weak*-continuous selector (ωn, 1) it verifies

‖Φ∗
n(e∗j,k(n))‖ ≤ (1 + εn)‖φ∗n(e∗j,k(n))‖,

from where the estimate follows. The passing through Sobczyk’s theorem is

entirely harmless, except for doubling the constant.

A warning here is in order: if one could combine the Moreno-Plichko de-

composition with a proof about the extension of L-valued operators yielding

an estimate 1 + ε (such as the one appearing in the appendix) then the final

estimate here would be 1 + ε. The 6 + ε is a legacy of our method of proof for

Theorem 3.1.

The nonseparable version for the extension into C(K)-spaces was obtained

using global arguments by Johnson and Zippin in [15]; it requires to be combined

with Theorem 1.1. in [30]. See [31] for a detailed exposition. Observe that a
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global proof for the extension of operators into Lindenstrauss spaces is not

possible until a global characterization is available.

Problem: Does there exist a global characterization for the extension of oper-

ators into Lindenstrauss spaces?

4. Universal L–trivial sequences, and new examples

A first step toward solving the previous problem is to obtain an embedding

X → L1(X) which is, regarding the extension of operators into Lindenstrauss

spaces, as “universal” as it is the canonical embedding X → C(BX∗) with

respect to the extension into C(K)-spaces. The construction of the space L1(X)

and the universal embedding are the contents of the next result.

Proposition 4.1 (Universal construction, isometric version): Given a Banach

space X there exists a Lindenstrauss superspace L1(X) such that the exact

sequence

0 → X → L1(X) → L1(X)/X → 0

is (1,L)-trivial. If X is separable then L1(X) can be chosen separable as well.

Proof. The separable case. Assume that X is separable and let us represent

it as ∪Xn in which each Xn is finite-dimensional, with embeddings in : Xn →

Xn+1. Next, let us consider the canonical isometric embedding δ1 : X1 →

C(BX∗
1
), the isometric embedding i1 : X1 → X2 and obtain the push-out space

P2. Let ∆2 : P2 → C(BP∗
2

) denote the canonical embedding. Observe the

diagram

X1
ı1

//

δ1

��

X2
ı2

//

u2

��

X3
//

u3

��

· · ·

C(BX∗
1
)

v2

// P2

∆2

��

C(BP∗
2

)
v3

// P3

∆3

��

C(BP∗
3

) // · · ·
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in which P3 is the push-out space of the embeddings ∆2u2 : X2 → P2 and

i2 : X2 → X3. The process continues inductively. The Lindenstrauss space we

are looking for is the inductive limit

C(BX∗
1
)

∆2v2−−−−→ C(BP∗
2

)
∆3v3−−−−→ C(BP∗

3
) −−−−→ · · · ≡ L1(X).

while the embedding J : X −→ L1(X) is locally defined by the vertical isometric

embeddings ∆nun : Xn → C(BP∗
n

). We show that this construction has the

universal property that every operator T : X → L into a Lindenstrauss space

can be extended through J . Let L1 be a separable Lindenstrauss space which,

using [19] can be put as an inductive limit lim→ Yn (with isometric embeddings

yn) in which Yn is isometric to some l
k(n)
∞ space. Let φ : X → L1 be a norm

one operator for which we assume that φn = φ|Xn
sends Xn into Yn. For the

first step, consider the diagram

X1
δ1

//

φ1

��

i1
  @

@@
@@

@@
@

C(BX∗
1
)

φ
ω1
1

||zz
zzz

zzz
zz

zz
zzz

zzz
zz

z v2

##F
FF

FF
FF

FF

X2
u2

//

φ2

��

P2
∆2

//

φp2

{{wwwwwwwwwwwwwwwwwwwwwww
C(BP∗

2
)

Y1

y1
!!B

BB
BB

BB
B

Y2

Here φω1
1 is an extension of φ1 obtained through the canonical homogeneous

1-weak*-continuous selector for δ∗1 . Since Y1 is isometric to l
k(1)
∞ we have

‖φω1
1 ‖ ≤ ‖φ1‖. The universal property of the push-out yields a (unique)

operator φp2 : P2 → Y2 verifying φp2u2 = φ2 and φp2v2 = y1φ
ω1
1 and such

that ‖φp2‖ ≤ max{‖y1φ
ω1
1 ‖, ‖φ2‖} ≤ 1. Finally, take as φω2

p2
an extension of φp2
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obtained through the canonical homogeneous 1-weak*-continuous selector for

∆∗
2. For the general case, consider the diagram

Xn

∆nun
//

φn

��

in
!!D

DD
DD

DD
DD

C(BP∗
n

)

φωn
pn

{{wwwwwwwwwwwwwwwwwwwwwww vn

##H
HHHHHHHH

Xn+1

un+1
//

φn+1

��

Pn+1

∆n+1
//

φpn+1

zzuuuuuuuuuuuuuuuuuuuuuuuu
C(BP∗

n+1
)

Yn

yn
""E

EEEE
EEE

Yn+1

Here φωn
pn

is an extension of φpn
obtained through the canonical homogeneous

1-weak*-continuous selector for ∆∗
n.

Since Yn is isometric to l
k(n)
n we have ‖φωn

pn
‖ ≤ ‖φpn

‖. The universal property

of the push-out yields a (unique) operator φpn+1 : Pn+1 → Yn+1 verifying

φpn+1un+1 = φn+1 and φpn+1vn+1 = ynφ
ωn
pn

and such that

‖φpn+1‖ ≤ max{‖ynφ
ωn
pn

‖, ‖φn+1‖} ≤ 1.

Finally, φ
ωn+1
pn+1 is an extension of φpn+1 obtained through the canonical homoge-

neous 1-weak*-continuous selector for ∆∗
n+1. Since Yn+1 is isometric to l

k(n+1)
n

we have ‖φ
ωn+1
pn+1 ‖ ≤ ‖φpn+1‖.

Therefore, if Φ : L1(X) → L1 denotes the operator locally defined as

Φ|C(BP∗
n

) = φωn
pn

then one has

‖Φ‖ ≤ sup
n

‖φωn+1
pn+1

‖ ≤ ‖φ1‖ ≤ ‖φ‖.

Nonseparable case. We perform a transfinite induction with some variation

in the construction with respect to the separable case. It is clear that a Banach

space with dens(X) = ℵ1 can be represented as an inductive limit X = lim→Xα

of separable spaces ordered by the family of all countable ordinals α. Since the

range of an operator defined on a separable space into a Lindenstrauss space lies

into a separable Lindenstrauss space, the argument for the separable case can
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be continued to get an universal embedding J : X → L1(X) for nonseparable X

with dens(X) = ℵ1. Assume then the result has been already proved for spaces

X with densX < ℵβ, and let us prove it for spaces X with densX = ℵβ . Let us

set X = lim→Xα as an inductive limit, ordered by ordinals α with |α| < ℵβ, of

spaces Xα with densXα = |α| as in the diagram.

Xα

��

// L1(Xα)

��

Xα+1
//

��

Pα+1
// L1(Pα+1)

��

...
...

Xβ =
⋃

α<β Xα

��

// L1(Xβ) =
⋃

α<β L1(Pα+1)

��

Xβ+1 // Pβ1
// L1(Pβ+1)

Let φ,L1 be as before. For the first step, consider the diagram

X1
J1

//

φ1

��

i1
  A

AA
AA

AA
A L1(X1)

Φ1

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

z v2

""F
FF

FF
FF

FF

X2
u2

//

φ2

��

P2
J2

//

φp2

{{wwwwwwwwwwwwwwwwwwwwww
L1(P2)

L1

id BB
BB

BB
BB

BB
BB

BB
BB

L1
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By the induction hypothesis the extension Φ1 exists. For the general step,

the diagram:

Xα

Jαuα
//

φα

��

iα
""D

DD
DD

DD
DD

L1(Pα)

Φpα

{{wwwwwwwwwwwwwwwwwwwwww vα

##H
HH

HH
HH

HH

Xα+1

uα+1
//

φα+1

��

Pα+1

Jα+1
//

φpα+1

zzuuuuuuuuuuuuuuuuuuuuuuuu
L1(Pα+1)

L1

id FF
FF

FF
FF

F

FF
FF

FF
FF

F

L1

shows that one should take as L1(X) the inductive limit lim→ L1(Xα), with

embedding J given locally by Jαuα; and how the extension of φ through J can

be achieved.

Discussion: Uniqueness of the universal Lindenstrauss space. The

space L1(X) is certainly not unique (we will still see a third construction below).

It is however unique in the wider category of superspaces of X (having as

objects superspaces a : X → A of X and as morphisms between two superspaces

a : X → A and b : X → B an operator t : A→ B such that ta = b). As a Banach

space “it” has however a dependence upon the finite dimensional decomposition

{Xn} chosen as starting point. Nevertheless, the universal property of the

embedding is enough to ensure the functorial character of the construction, in

the sense that given an operator t : X → Y between two Banach spaces and

universal embeddings x : X → L1(X) and y : Y → L1(Y ) there exists a unique

operator T : L1(X) → L1(Y ) making commutative the square; i.e., Tx = yt.

This could be used to transfer properties of X to L1(X). It would be nice to

know if this construction could yield a space L1(X) with FDD when X has it;

or, in the nonseparable setting, an L1(X) with PRI when X has a PRI.

The simplex S formed by all the Banach limits on l∞ is often called the

Poulsen simplex; and the space of continuous functions on S when endowed

with the weak*-topology is called the Gurarij space G (see [27]). The Gurarij

space is universal for separable Lindenstrauss spaces, in the sense that every

separable Lindenstrauss space is a complemented subspace of G. It is therefore
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also true that every separable Banach space admits an embedding into the

Gurarij space which is universal with respect to the extension of operators

into Lindenstrauss spaces. This yields the following addition to the omnibus

lemma: If Y is separable and gY : Y → G denotes an embedding of Y into the

Gurarij space then the exact sequence 0 → Y
j
→ X → Z → 0 is (λ,L)-trivial

if and only if there exists a weak* continuous map ω : S → λBX∗ , such that

gY
∗
|S = j∗ω. One could be tempted to believe that L1(X) could be C(BX∗).

It is not: the sequence 0 → G → C(BG∗) → Q → 0 cannot L-split since G is

not complemented in any C(K)-space (see also Proposition 5.1). Nevertheless,

C(BX∗) and L1(X) are not so far away: Semadeni shows in [26] that if a

compact space K is the projective limit (in the category of compact spaces and

continuous functions) of a filtering family Ki of compact spaces then C(K) is

the inductive limit (in the category of Banach spaces) of the family C(Ki). This

means that given a Banach space X admitting a representation X =
⋃
Xn one

has C(BX∗) = lim→C(BX∗
n
); while L1(X) = lim→C(BP∗

n
).

A (1 + ε)-isomorphic version of the universal construction for the

separable case. A useful “isomorphic” or “local” version of the universal

Lindenstrauss is also possible; and indeed we already used it in the case of

subspaces of c0 to have a control on the resulting space: observe that starting

with a subspace H of c0 the isometric construction cannot yield c0 as the final

Lindenstrauss superspace (it can be directly seen from the fact the the first step

in the isometric construction already contains C[0, 1]; or using [15, Example 6]

of Johnson and Zippin which shows that there is no equal norm extension of

C(K)-valued operators from subspaces of c0. The local construction in Theorem

3.1 however got c0 as the bigger superspace. To get this local construction we

should work as follows: start with a representation of the space X as
⋃
Xn in

which each Xn is finite-dimensional, with embeddings in : Xn → Xn+1. Next,

let us consider a (1 + ε1)-isometric embedding j1 : X1 → l
a(1)
∞ and form the

push-out space P1 of i1, j1 to obtain a diagram

X1

j1
//

i1

��

l
a(1)
∞

u1

��

X2
J1

// P1.
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Take then a (1 + ε2)-isometric embedding j2 : P1 → l
a(2)
∞ and let ω2 be a

homogeneous (1 + ε2)-weak*-continuous selector for j2. We set Φ2 = φp1

ω2 .

The process continues working now with δ2Φ2 and φ3, forming their push out

space P2 as in the diagram

P1

j2
//

i2

��

l
a(2)
∞

u2

��

X3
J2

// P2

and so on. The resulting Lindenstrauss superspace is the inductive limit

lim→ l
a(k)
∞ with respect to the operators jk+1uk : l∞

a(k) −→ l∞
a(k+1). The

embedding of X into this inductive limit is locally defined by the operators

jk+1Jk.

The Bourgain-Pisier sequence. In [5] Bourgain and Pisier showed that

every separable Banach space X can be embedded into some L∞-space L∞(X)

in such a way that the quotient space L∞(X)/X has the Schur and Radon-

Nikodym properties. Let us show that this embedding allows one to extend

operators into Lindenstrauss spaces.

Proposition 4.2: For every separable Banach space X and ε > 0 the Bour-

gain–Pisier sequence

0 → X → L∞(X) → L∞(X)/X → 0

is (1 + ε,L)-trivial.

Proof. What we will actually show is that the process followed by Bourgain

and Pisier in [5] is an “isomorphic version” of the previous local method. The
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diagram below might be helpful to understand the first steps in the construction.

S1
//

u1

��

l
a(1)
∞

ũ1

��

S2

u2

��

// l
a(2)
∞

ũ2

��

X1

j1|X1
//

��

��
//

//
//

//
/

PO1

��

��
//

//
//

//
/

S3

u3

��

// l
a(3)
∞

ũ3

��

X2
//

��
//

//
//

//
/ [j1(X2) + ũ1(l

a(1)
∞ )] //

��

PO2

��

��
//

//
//

//
/

X
j1

// E1

//
//

//
//

/

//
//

//
//

/

X3
//

��
//

//
//

//
/ P3 = [j2j1(X3) + ũ2(l

a(2)
∞ )] //

��

PO3

��

��
//

//
//

//
/

E1

j2
// E2

**
**

**
**

**
**

**

**
**

**
**

**
**

**

X4
//[j3j2j1(X4) + ũ3(l

a(3)
∞ )]

E2

j3
// E3

Assume as before that X =
⋃
Xn with each Xn finite dimensional, and let

in : Xn → X be the inclusion. Bourgain and Pisier use in [5] a clever device

to control the resulting L∞-space: fix λ > 1; and then set λ−1 < η < 1. Let

s1 : S1 → l
a(1)
∞ be a subspace such that there is an isomorphism u1 : S1 → X1

with ‖u1‖ ≤ η and ‖u−1
1 ‖ ≤ λ. Form the push-out of s1 and i1 to obtain a

Banach space E1, an isometric embedding j1 : X → E1 and an embedding

ũ1 : l
a(1)
∞ → E1 making a commutative square, namely, j1i1u1 = ũ1s1. We call

PO1 the subspace of E1 that is the push-out of s1 and u1. In this case, PO1 is

λ-isomorphic to l
a(1)
∞ . Next we form the push-out of the restriction of j1 to X1

and the inclusionX1 → X2. This new push-out space is P2 = [j1(X2)+ũ1(l
a(1)
∞ )]

(endowed with the norm of E1).
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For the next step, take s2 : S2 → l
a(2)
∞ a subspace such that there is an

isomorphism u2 : S2 → P2 with ‖u2‖ ≤ η and ‖u−1
2 ‖ ≤ λ. Form the push-out

of s2 and the composition S2u2 : P2 → E1 that we call momentarily U2. This

yields a Banach space E2 with an isometric embedding j2 : E1 → E2 and an

embedding ũ2 : l
a(2)
∞ → E2 making a commutative square, namely: j2U2 = ũ2s2.

We call PO2 the push-out of s2 and u2, a subspace of E2 λ-isomorphic to l
a(2)
∞ .

Form then the push-out of the restriction j2 : X2 → PO2 and the embedding

X2 → X3. This new push-out space is P3 = [j2j1(X3)+ũ2(l
a(2)
∞ )] (endowed with

the norm of E2), and the process can continue. The resulting L∞,λ superspace

is the inductive limit

PO1
j2ũ1
−→ PO2

j3ũ2
−→ PO3 −→ · · ·

while the embedding j : X → L∞(X) is given byj(x) = jn · · · j1(x) when

x ∈ Xn. We show now that this embedding provides a L-trivial sequence

0 → X
j
→ L∞(X) → Q → 0. The extension process of an operator φ from X

into a Lindenstrauss space L is depicted in the following diagram

X1

j1
//

φ1

��

��
;;

;;
;;

;;
;;

PO1

!!D
DDDD

DDD
DD

D

Φ1

����
��

��
��

��
��

��
��

��
��

��

X2
//

φ2

��

""E
EEE

EE
EE

EEE
E

P1

j2

//

φp1

����
��

��
��

��
��

��
��

��
��

��
��

PO2

Φ2

{{wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

��
88

88
88

88
88

l
k(1)
∞

δ1

��
99

99
99

99
99

X3
j2j1

//

φ3

��

P2

l
k(2)
∞

δ2

!!D
DD

DD
DD

DD
DD

D

l
k(3)
∞

Here Φ1 denotes the unique push-out operator corresponding to the couple

φ1u1 and its norm-preserving extension to l
a(1)
∞ ; while φp1 denotes the unique
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push-out operator corresponding to the couple φ2,Φ1. For n > 1, Φn is the

unique push-out operator corresponding to the couple Φn−1un and its norm-

preserving extension to l
a(n)
∞ ; while φpn

denotes the unique push-out operator

corresponding to the couple φn+1,Φn. The desired extension operator Φ of φ

is thus locally given by

Φ(x) = Φn(x) if x ∈ POn.

It is plausible that the Bourgain–Pisier embedding is universal with respect

to the extension of operators into L∞-spaces, however the local approach seems

to be useless in this regard.

5. Different types of L∞-splitting

In [11], the class of Lindenstrauss–Pe lczyński spaces, in short LP-spaces, was

introduced as those Banach spaces E such that every E-valued operator defined

on a subspace of c0 can be extended to the whole c0. In this language, the

result formulated by Lindenstrauss and Pe lczyński is that Lindenstrauss spaces

are LP-spaces. It is shown in [11] that LP-spaces are L∞-spaces. Our purpose

now is to show that C(K)-splitting , L-splitting, LP-splitting and L∞-splitting

are different notions.

Proposition 5.1: C(K)-splitting does not imply L-splitting.

Proof. It was already observed in [3] that as a consequence of the isometric

predual of l1 that is not complemented in any C(K)-space there constructed,

the Gurarij space G (see [13]) cannot be complemented in any C(K)-space.

Thus, the exact sequence 0 → G → C(BG∗) → Q → 0 which obviously C(K)-

splits cannot L-split.

Let us show now how difficult seems to be for an embedding into a Linden-

strauss space to be either LP-trivial or L∞-trivial.

Proposition 5.2: Let X be an infinite dimensional Banach space, that is not

itself a Lindenstrauss space. If some embedding X → L1 of X into a Linden-

strauss space is LP-trivial, then every complemented subspace of X contains

c0.

Proof. To prove the first part, let X be a separable Banach space not containing

copies of c0, and let 0 → X → L1 → Q1 → 0 be an exact sequence that we
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assume it LP-splits. Applying the Bourgain–Pisier construction to X we obtain

an exact sequence 0 → X → L∞(X) → S → 0. The space L∞(X) is an LP-

space because (see [11]) it is an L∞-space that does not contain c0. The inclusion

X → L∞(X) cannot be extended to L1 since Lindenstrauss spaces share with

C(K)-spaces the property that every operator that is not an isomorphism on

a copy of c0 must be weakly compact (see [14]); in which case the Dunford–

Pettis property of L∞-spaces yields that such extension must also be completely

continuous, hence X should be a reflexive Schur space.

It has been already proved that

Proposition 5.3: L-splitting does not imply LP-splitting.

That LP-splitting does not imply L∞-splitting was already proved in [11]

answering a question of Zippin [31].

Proposition 5.4: Let L1 be a Lindenstrauss space, and let X → L1 be an em-

bedding. If it is L∞-trivial then L1/X must be isomorphic to a complemented

subspace of a Lindenstrauss space.

Proof. Consider the completed push-out diagram

0

��

0

��

0 // X //

��

L1 //

��

Q // 0

0 // L∞(X) //

��

PO //

��

Q // 0

S

��

PO/L

��

0 0

in which the first vertical sequence is the Bourgain–Pisier sequence associ-

ated to X , which has been shown in Proposition 4.2 that L-splits. Therefore

PO = L1 ⊕S. If 0 → X → L1 → Q→ 0 is L∞-trivial then PO = L∞(X)⊕Q.

So, Q is a complemented subspace of L ⊕ S. Since S is Schur, it is not hard to
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see that these two spaces are essentially incomparable, following the notation

of [12]. Therefore by [12] every complemented subspace of their product can

be decomposed as Q = A ⊕ B where A is complemented in L1 and B comple-

mented in S. Now, B must be finite dimensional because a Lindenstrauss space

cannot have an infinite dimensional quotient with the Schur property; so Q is

isomorphic to a complemented subspace of a Lindenstrauss space.

Unfortunately the previous conditions are far from necessary: see in [7] non-

trivial sequences having the form 0 → C(A) → C(B) → C(K) → 0.

Conjecture: No sequence 0 → X → C(K) → C(K)/X → 0 is L∞-trivial.

6. Appendix. Classical proof for Theorem 1

Lindenstrauss and Pe lczyński suggest in [20] using the following generalization

of Lazar and Lindenstrauss (see [19]) of Edward’s separation theorem to prove

Theorem 1.1:

Proposition 6.1: Let Y be a Banach space with Y ∗ = L1(µ) for some µ.

Let be g : BY ∗ → (−∞,∞] be a concave ω∗-lower semi-continuous function

satisfying:

g(y∗) + g(−y∗) ≥ 0, y∗ ∈ BY ∗ .

Let F be a face essentially ω∗-closed of BY ∗ and suppose that f is a function

over H=conv (F ∪−F ) which is ω∗-continuous, affine, symmetric, and such that

f ≤ g|H . Then there exists a ω∗-continuous, affine, and symmetric extension h

of f to the whole BY ∗ in such a way that h ≤ g.

Proof of Theorem 1: Without loss of generality we can assume that ‖T ‖ = 1.

It is enough to prove that for each ε > 0 , and for each y ∈ c0 −X , T can be

extended to an operator on {X + [y]} having norm at most 1 + ε. This means

to show that there exists ξ ∈ Y such that for all x ∈ X one has

‖ξ − Tx‖ ≤ (1 + ε)‖y − x‖;

in other words, ξ has to satisfy that for all y∗ ∈ BY ∗

sup
x∈X

(Tx(y∗) − (1 + ε)‖y − x‖) = G(y∗) ≤ ξ(y∗) ≤ F (y∗)

= inf
x∈X

(Tx(y∗) + (1 + ε)‖y − x‖) .
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Notice that F (−y∗) = −G(y∗). Consider now F , a concave function ω∗ lower

semi continuous dominated by F , then the function G(y∗) = −F (−y∗) is a

convex, ω∗-upper semi-continuous function which dominates −F .

Claim: If F (y∗) + F (−y∗) ≥ 0 then the value ξ exists.

Proof of the claim. : Let y∗0 ∈ extBY ∗ be an extreme point. It is obvious that

there exists α ∈ R such that −F (−y∗0) ≤ α ≤ F (y∗0). Let us consider the

function f(λy∗0) = λα on H = conv(y∗0 ∪ −y∗0) = [y∗0 ,−y
∗
0 ]. Since F is concave

we have:

θα+ (1 − θ)(−α) ≤ θF (y∗0) + (1 − θ)F (−y∗0) ≤ F (θy∗0 + (1 − θ)(−y∗0)).

What is the same, f ≤ F |H . Using the Proposition there exists a function

h : BY ∗ → R which is also affine, symmetric and ω∗-continuous, which ex-

tends f and still satisfies h ≤ F . This is the function h we are looking for:

recall that a function h over BY ∗ is ω∗-continuous, affine and symmetric if

and only if h(y∗) = y∗(y) for some y ∈ Y . Since one has h(y∗) ≤ F (y∗) and

h(−y∗) ≤ F (−y∗) ∀y∗ ∈ BY ∗ then −F (−y∗) ≤ h(y∗) ≤ F (y∗) ∀y∗ ∈ BY ∗ . In

particular,

−F (−y∗) ≤ −F (−y∗) ≤ h(y∗) ≤ F (y∗) ≤ F (y∗) for all y∗ ∈ BY ∗ .

The point ξ we are looking is the point making h(y∗) = y∗(ξ) for all y∗.

Once the claim has been proved, the rest of the proof of Theorem 1 closely

follows the original one of Lindenstrauss and Pe lczyński [20]. We include it for

the sake of completeness.

Assume that exists y∗ ∈ BY ∗ such that F (y∗) < −F (−y∗). Then, there exist

sequences {u∗n}
∞
n=1, {v

∗
n}

∞
n=1 ∈ BY ∗ which are weak*-convergent to y∗ and

limF (u∗n) < lim−F (−v∗n).

From the definition of F and G it can be easily deduced the existence of se-

quences {xn}, {zn} ∈ X , such that

(1) lim[Txn(u∗n) + (1 + ε)‖y − xn‖] < lim[Tzn(v∗n) − (1 + ε)‖y − zn‖]

Let µn, ψn be norm preserving extensions of T ∗u∗n, T
∗v∗n ∈ X∗ to `1 .

Passing to subsequences if necessary, we can assume that µ∗
n

ω∗

−→ µ , and that

ψ∗
n

ω∗

−→ ψ. Then µ|X = ψ|X = T ∗y∗, because T ∗u∗n weak*-converges to T ∗y∗
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as µn|X weak*-converges to µ|X and T ∗v∗n weak*-converges to T ∗y∗ as ψn|X

weak*-converges to ψ|X .

A well-known property of the ω∗ convergence in `1 is that, for every u ∈ `1,

and every weak*-null sequence wn one has

lim
n∈N

(‖wn + u‖ − ‖wn‖ − ‖u‖) = 0.

So,

(2) lim
n∈N

(‖µn‖ − ‖µn − µ‖ − ‖µ‖) = 0

lim
n∈N

(‖ψn‖ − ‖ψn − ψ‖ − ‖ψ‖) = 0

If we restrict to X , since ‖µn‖ = ‖T ∗y∗n‖, ‖ψn‖ = ‖T ∗y∗n‖, while the norm of

the other functionals in (2) just decrease, we get, say, ‖µ‖ = ‖ψ‖ = ‖T ∗y∗‖ = r,

and therefore

lim sup ‖µn − µ‖ ≤ 1 − r lim sup ‖ψn − ψ‖ ≤ 1 − r.

Notice that lim sup (µn − µ)(y) = 0, lim sup (ψn − ψ)(y) = 0, and thus

lim [Txn(y∗n) + (1 + ε)‖y − xn‖ − Tzn(y∗n) + (1 + ε)‖y − zn‖]

= lim [µn(xn) − ψn(zn) + (1 + ε)(‖y − zn‖ + ‖y − xn‖)]

= lim [(µn − µ)(xn) − (ψn − ψ)(z∗n)

+ T ∗y∗(xn − zn) + (1 + ε)(‖y − zn‖ + ‖y − xn‖)]

= lim [(µn − µ)(xn − y) − (ψn − ψ)(zn − y)

+ T ∗y∗(xn − zn) + (1 + ε)(‖y − zn‖ + ‖y − xn‖)]

= lim [S1(n) + S2(n) + S3(n)]

Here

S1(n) = (µn − µ)(xn − y) + (1 − r + ε)‖y − xn‖

S2(n) = −(ψn − ψ)(zn − y) + (1 − r + ε)‖y − zn‖

S3(n) = T ∗y∗(xn − zn) + r(‖y − zn‖ + ‖y − xn‖).

Now, S1(n) and S2(n) are nonnegatives for large n, while S3(n) ≥ 0 for all n.

This contradicts (1) and concludes the proof of Theorem 1.
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[9] J. M. F. Castillo and M. González, Three-Space Problems in Banach Space Theory,

Lecture Notes in Mathematics, Vol. 1667, Springer-Verlag, 1997.

[10] J.M.F. Castillo and Y. Moreno, On the Lindenstrauss-Rosenthal theorem, Israel Journal

of Mathematics 140 (2004), 253–270
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